Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers
نویسندگان
چکیده
Within the context face expression classification using the facial action coding system (FACS), we address the problem of detecting facial action units (AUs). The method adopted is to train a single error-correcting output code (ECOC) multiclass classifier to estimate the probabilities that each one of several commonly occurring AU groups is present in the probe image. Platt scaling is used to calibrate the ECOC outputs to probabilities and appropriate sums of these probabilities are taken to obtain a separate probability for each AU individually. Feature extraction is performed by generating a large number of local binary pattern (LBP) features and then selecting from these using fast correlation-based filtering (FCBF). The bias and variance properties of the classifier are measured and we show that both these sources of error can be reduced by enhancing ECOC through the application of bootstrapping and class-separability weighting.
منابع مشابه
Facial Action Unit Recognition using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classi ers
Within the context face expression classi cation using the facial action coding system (FACS), we address the problem of detecting facial action units (AUs). The method adopted is to train a single error-correcting output code (ECOC) multiclass classi er to estimate the probabilities that each one of several commonly occurring AU groups is present in the probe image. Platt scaling is used to ca...
متن کاملFacial Expression Detection using Filtered Local Binary Pattern Features with ECOC Classifiers and Platt Scaling
We outline a design for a FACS-based facial expression recognition system and describe in more detail the implementation of two of its main components. Firstly we look at how features that are useful from a pattern analysis point of view can be extracted from a raw input image. We show that good results can be obtained by using the method of local binary patterns (LPB) to generate a large numbe...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کامل